How climate change has affected organisms.

How microorganisms can help us get to net negative emissions

Many of the common items we use in our everyday lives—from building materials to plastics to pharmaceuticals—are manufactured from fossil fuels. To reduce our reliance on fossil fuels and reduce greenhouse gas emissions, society has increasingly tried turning to plants to make the everyday products we need. For example, corn can be turned into corn ethanol and plastics, lignocellulosic sugars can be turned into sustainable aviation fuels, and paints can be made from soy oil. But what if plants could be removed from the picture, eliminating the need for water, fertilizer, and land? What if microbes could instead be harnessed to make fuels and other products? And what if these microbes could grow on carbon dioxide, thus simultaneously producing valuable goods while also removing a greenhouse gas from the atmosphere, all in one reactor? Too good to be true?

Read More

Earth to reach temperature tipping point in next 20 to 30 years, new study finds

Earth’s ability to absorb nearly a third of human-caused carbon emissions through plants could be halved within the next two decades at the current rate of warming, according to a new study in Science Advances by researchers at Northern Arizona University, the Woodwell Climate Research Center and the University of Waikato, New Zealand. Using more than two decades of data from measurement towers in every major biome across the globe, the team identified a critical temperature tipping point beyond which plants’ ability to capture and store atmospheric carbon—a cumulative effect referred to as the “land carbon sink”—decreases as temperatures continue to rise.

Read more

Heat stress may affect more than 1.2 billion people annually by 2100

Heat stress from extreme heat and humidity will annually affect areas now home to 1.2 billion people by 2100, assuming current greenhouse gas emissions, according to a Rutgers study. That’s more than four times the number of people affected today, and more than 12 times the number who would have been affected without industrial era global warming. Rising global temperatures are increasing exposure to heat stress, which harms human health, agriculture, the economy and the environment. Most climate studies on projected heat stress have focused on heat extremes but not considered the role of humidity, another key driver.

Read more

Grasshoppers and Climate Change

Carbon dioxide enrichment, as a result of climate change, is resulting in greater plant biomass, but at the same time, leading to nutrient dilution, a decreasing concentration of essential minerals in prairie grasses. Data collected over the past two decades showed the number of grasshoppers declining, most likely a result of declines in nutrient levels.

Read more

Tropical forests’ carbon sink is already rapidly weakening

The ability of the world’s tropical forests to remove carbon from the atmosphere is decreasing, according to a study tracking 300,000 trees over 30 years.

The global scientific collaboration, led by the University of Leeds, reveals that a feared switch of the world’s undisturbed tropical forests from a carbon sink to a carbon source has begun.

Intact tropical forests are well-known as a crucial global carbon sink, slowing climate change by removing carbon from the atmosphere and storing it in trees, a process known as carbon sequestration. Climate models typically predict that this tropical forest carbon sink will continue for decades.

Read more

Save the giants, save the planet

Habitat loss, hunting, logging and climate change have put many of the world’s most charismatic species at risk. A new study, led by the University of Arizona, has found that not only are larger plants and animals at higher risk of extinction, but their loss would fundamentally degrade life on earth.

Read more

Close Menu